Dissertation Proposal
Dealing with Dubious Facts
in Knowledge Graphs
Ankur Padia
1:00-3:00pm Wednesday, 30 November 2016, ITE 325b, UMBC
Knowledge graphs are structured representations of facts where nodes are real-world entities or events and edges are the associations among the pair of entities. Knowledge graphs can be constructed using automatic or manual techniques. Manual techniques construct high quality knowledge graphs but are expensive, time consuming and not scalable. Hence, automatic information extraction techniques are used to create scalable knowledge graphs but the extracted information can be of poor quality due to the presence of dubious facts.
An extracted fact is dubious if it is incorrect, inexact or correct but lacks evidence. A fact might be dubious because of the errors made by NLP extraction techniques, improper design consideration of the internal components of the system, choice of learning techniques (semi-supervised or unsupervised), relatively poor quality of heuristics or the syntactic complexity of underlying text. A preliminary analysis of several knowledge extraction systems (CMU’s NELL and JHU’s KELVIN) and observations from the literature suggest that dubious facts can be identified, diagnosed and managed. In this dissertation, I will explore approaches to identify and repair such dubious facts from a knowledge graph using several complementary approaches, including linguistic analysis, common sense reasoning, and entity linking.
Committee: Drs. Tim Finin (Chair), Anupam Joshi, Tim Oates, Paul McNamee (JHU), Partha Talukdar (IISc, India)